Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides.
نویسندگان
چکیده
BACKGROUND AND AIMS Atriplex (Halimione) portulacoides is a halophytic, C(3) shrub. It is virtually confined to coastal salt marshes, where it often dominates the vegetation. The aim of this study was to investigate its growth responses to salinity and the extent to which these could be explained by photosynthetic physiology. METHODS The responses of young plants to salinity in the range 0-700 mol m(-3) NaCl were investigated in a glasshouse experiment. The performance of plants was examined using classical growth analysis, measurements of gas exchange (infrared gas analysis), determination of chlorophyll fluorescence characteristics (modulated fluorimeter) and photosynthetic pigment concentrations; total ash, sodium, potassium and nitrogen concentrations, and relative water content were also determined. KEY RESULTS Plants accumulated Na(+) approximately in proportion to external salinity. Salt stimulated growth up to an external concentration of 200 mol m(-3) NaCl and some growth was maintained at higher salinities. The main determinant of growth response to salinity was unit leaf rate. This was itself reflected in rates of CO(2) assimilation, which were not affected by 200 mol m(-3) but were reduced at higher salinities. Reductions in net photosynthetic rate could be accounted for largely by lower stomatal conductance and intercellular CO(2) concentration. Apart from possible effects of osmotic shock at the beginning of the experiment, salinity did not have any adverse effect on photosystem II (PSII). Neither the quantum efficiency of PSII (Phi(PSII)) nor the chlorophyll fluorescence ratio (F(v)/F(m)) were reduced by salinity, and lower mid-day values recovered by dawn. Mid-day F(v)/F(m) was in fact depressed more at low external sodium concentration, by the end of the experiment. CONCLUSIONS The growth responses of the hygro-halophyte A. portulacoides to salinity appear largely to depend on changes in its rate of photosynthetic gas exchange. Photosynthesis appears to be limited mainly through stomatal conductance and hence intercellular CO(2) concentration, rather than by effects on PSII; moderate salinity might stimulate carboxylation capacity. This is in contrast to more extreme halophytes, for which an ability to maintain leaf area can partially offset declining rates of carbon assimilation at high salinity.
منابع مشابه
Competition and herbivory during salt marsh succession: the importance of forb growth strategy
1 Despite much debate about their importance, only a few ®eld studies have evaluated the intensity of competition and herbivory. 2 Artemisia maritima, Atriplex portulacoides and Plantago maritima, three plant species which are common in European temperate salt marshes, were transplanted into dierent successional stages (15, 30 and 45 years old) of a temperate salt marsh. Biomass of each transp...
متن کاملThe Photosynthesis, Na+/K+ Homeostasis and Osmotic Adjustment of Atriplex canescens in Response to Salinity
Atriplex canescens (fourwing saltbush) is a C4 perennial fodder shrub with excellent resistance to salinity. However, the mechanisms underlying the salt tolerance in A. canescens are poorly understood. In this study, 5-weeks-old A. canescens seedlings were treated with various concentrations of external NaCl (0-400 mM). The results showed that the growth of A. canescens seedlings was significan...
متن کاملGene expression and physiological analysis of Atriplex halimus (L.) under salt stress
Atriplex halimus (L.) is a xero-halophyte shrub adapted to extreme drought and salinity stresses. Ability of local A. halimus to tolerate salinity stress was investigated. Two-month-old A. halimus plants were exposed to salt stress (0, 150, 300 and 600 mM NaCl) in properly aerated liquid medium. Differential gene expression of stressed plants was investigated using real-time PCR analysis. Furth...
متن کاملPlant responses to heterogeneous salinity: growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone
Soil salinity is generally spatially heterogeneous, but our understanding of halophyte physiology under such conditions is limited. The growth and physiology of the dicotyledonous halophyte Atriplex nummularia was evaluated in split-root experiments to test whether growth is determined by: (i) the lowest; (ii) the highest; or (iii) the mean salinity of the root zone. In two experiments, plants ...
متن کاملEffects of Inundation, Nutrient Availability and Plant Species Diversity on Fine Root Mass and Morphology Across a Saltmarsh Flooding Gradient
Saltmarsh plants are exposed to multiple stresses including tidal inundation, salinity, wave action and sediment anoxia, which require specific root system adaptations to secure sufficient resource capture and firm anchorage in a temporary toxic environment. It is well known that many saltmarsh species develop large below-ground biomass (roots and rhizomes) but relations between fine roots, in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of botany
دوره 100 3 شماره
صفحات -
تاریخ انتشار 2007